HANYUE LI

College Station, TX | hanyueli@tamu.edu

EDUCATION		
Texas A&M University (TAMU), College Station, TX	GPA 4.0/4.0	Aug. 2017 – Present
Ph.D. Candidate for Electrical Engineering		
Carnegie Mellon University (CMU), Pittsburgh, PA		Aug. 2017
Master of Science in Electrical and Computer Engineering	QPA 4.0/4.0	
Illinois Institute of Technology (IIT), Chicago, IL		May. 2016
Bachelor of Science in Electrical Engineering	GPA 4.0/4.0 (Summa Cum Laude)	
SKILLS		
Programming: Python, Java, R, C		
Software: PowerWorld, MATLAB, PSSE, CCS, LTSpice		
Language: Mandarin, English		
RESEARCH PROJECTS	Caller Ste	4 TX 2017
ARPA-E Synthetic Electric Grid Project		tion, TX Aug. 2017
Performing studies on the synthetic electric grid that statically ar as public test cases.	id functionally similar to the actual electric grids	, which could be used
•	tic hus level hourly load for one year in 2000 hu	Toyog anga
 Developed synthetic load modeling method to create realis Implementing Unit Commitment to create synthetic scenar 		
• Implementing Our Communent to create synthetic scenar Power System Market Optimization		0.0
Power System Market OptimizationPittsburgh, PAMay. 2017Investigated the computational ability of different power system market problem solving methods, and the compatibility of different		
power system commercial software.		
 Formulated the Economic Dispatch and Unit Commitment problem considering generator thermal, operating reserve, 		
transmission capability and environmental constraints		
 Performed ACOPF in two software for compatibility comparison (PowerWorld, PSSE and MATPOWER) 		
 Compared the solving ability of Branch & Bound algorithm and multiple integer linear programming with respect to UC 		
problem	in and maniple moger mean programming with	
 Compared the solving ability of genetic algorithm and part 	icle swarm optimization on security-constrained	economic dispatch
Short Term Load Forecasting		cago, IL May. 2016
Developed short term load forecasting model based on data scien		
ISO data.		0 0
• Developed the load forecasting model using convolutional	neural networks to establish relation between tin	ne and weather input
and load output		-
• Improved the model accuracy by the classifying seasonal a	nd locational demand profiles	
• Performed the sensitivity analysis to quantify of the effects	of different input	
PROFESSIONAL EXPERIENCE		
ISO New England		Holyoke, MA
Summer Intern		Aug. 2018
Analyzed ISO New England Real Time Unit Commitment	(RTUC) and Unit Dispatch System (UDS) data	
• Developed a machine learning tool to identify daily load pe	eak to help operators to commit generators more	economically
Texas A&M University		College Station, TX
Research Assistant		Sept. 2017
ARPA-E Synthetic Electric Grid Project		
Carnegie Mellon University		Pittsburgh, PA
Teaching Assistant for Fundamentals of Electric Power System ((18-372)	Dec.2016
Held recitation lectures and exam review sessions		
 Evaluated homework, tests, and held office hours 		
ACTIVITIES/ORGANIZATIONS		
IEEE Texas Power and Energy Conference 2019 Co-director	College Station,	TX Mar. 2018
IEEE Texas Power and Energy Conference 2018 Event Coordin	nator College Station	, TX Sept. 2017
Chicago Area Undergraduate Research Symposium	Chicag	-
IEEE International Future Energy Challenge Team Leader	Long Beach	
IEEE PES Student Member	Chicago	o, IL Sep. 2014